Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using program synthesis to select instructions for and optimize input programs is receiving increasing attention. However, existing synthesis-based compilers are faced by two major challenges that prohibit the deployment of program synthesis in production compilers: exorbitantly long synthesis times spanning several minutes and hours; and scalability issues that prevent synthesis of complex modern compute and data swizzle instructions, which have been found to maximize performance of modern tensor and stencil workloads. This paper proposes MISAAL, a synthesis-based compiler that employs a novel strategy to use formal semantics of hardware instructions to automatically prune a large search space of rewrite rules for modern complex instructions in an offline stage. MISAAL also proposes a novel methodology to make term-rewriting process in the online stage (at compile-time) extremely lightweight so as to enable programs to compile in seconds. Our results show that MISAAL reduces compilation times by up to a geomean of 16x compared to the state-of-the-art synthesis-based compiler, HYDRIDE. MISAAL also delivers competitive runtime performance against the production compiler for image processing and deep learning workloads, Halide, as well as HYDRIDE across x86, Hexagon and ARM.more » « lessFree, publicly-accessible full text available June 10, 2026
-
The design of heterogeneous systems that include domain specific accelerators is a challenging and time-consuming process. While taking into account area constraints, designers must decide which parts of an application to accelerate in hardware and which to leave in software. Moreover, applications in domains such as Extended Reality (XR) offer opportunities for various forms of parallel execution, including loop level, task level and pipeline parallelism. To assist the design process and expose every possible level of parallelism, we present Trireme , a fully automated tool-chain that explores multiple levels of parallelism and produces domain specific accelerator designs and configurations that maximize performance, given an area budget. FPGA SoCs were used as target platforms and Catapult HLS [7] was used to synthesize RTL using a commercial 12nm FinFET technology. Experiments on demanding benchmarks from the XR domain revealed a speedup of up to 20 ×, as well as a speedup of up to 37 × for smaller applications, compared to software-only implementations.more » « less
An official website of the United States government

Full Text Available